No	Solution	Scheme	Sub	Marks
			marks	IVAGINS
1 (a)	$\frac{y}{(O)}$ (π) 2π	P1 Shape of tangent g P1 Shape of negative P1 Shift upward +1. Note: 1. Do not accept sine and cosine graph. 2. Ignore graph outside the range.	raph	raph
(b)	$y = \frac{x}{\pi} + 1$ Number of solutions = 3	N1 $y = \frac{x}{\pi} + 1$ Sketch straight line *gradient property property correct. N1 3	$*y = \frac{x}{\pi}$ or *y-int	with except

No	Solution	Scheme	Sub	Marks
2	$\log_9 x^2 - \log_3 (x - 4) = \log_3 5$		marks	
	$\frac{\log_3 x^2}{\log_3 9} - \log_3 (x - 4) = \log_3 5$	Use change base f $\log_a b = \frac{\log_c b}{\log_c a}.$	ormula	
	$\frac{\log_3 x^2}{2} - \log_3 (x - 4) = \log_3 5$ $\log_3 x - \log_3 (x - 4) = \log_3 5$	(K1) Use law log Use law		
	$\log_3\left(\frac{x}{x-4}\right) = \log_3 5$	$K1$ or \log_a	$n = \log_a$	$\log_a m - \log_a n$ $m + \log_a n$
	$\frac{x}{x-4} = 5$	K1 Equation that the change index	e logarit	RHS OR nm form to
	x = 5	x = 5	5	5

c 1

No	Solution	Scheme	Sub	Marks
			marks	
3	$2y + 20x = 160$ or $12x^2 + 2xy = 600$	$\boxed{P1 2y + 20x = 160}$	or 12x ² +	-2xy=600
	$y = 80 - 10x$ or $x = 8 - \frac{y}{10}$ or	P1 seen or implied		
	$y = \frac{300}{x} - 6x$			
	$12x^2 + 2x^*(80 - 10x) = 600$ or	Eliminate x or y .		
	$12^{*} \left(8 - \frac{y}{10}\right)^{2} + 2^{*} \left(8 - \frac{y}{10}\right) y = 600 \text{or}$ $2\left(\frac{300}{x} - 6x\right) + 20x = 160$	K1) Solve quad using factor or complete	orization,	formula
	Factorization			
	(x-5)(x-15)=0 or $(y+10)(y-30)=0$			
	OR Formula			
	$x = \frac{-(-20) \pm \sqrt{(-20)^2 - 4(1)(75)}}{2(1)}$ or			
	$y = \frac{-(40) \pm \sqrt{(40)^2 - 4(1)(2100)}}{2(1)}$			
	OR Completing the square			
	$8[(x-10)^{2}-(-10)^{2}-75] = 0 or$ $2[(y+20)^{2}-(20)^{2}-2100] = 0$	N1 First set value x or	y.	
	$x=5, \left[x=15\right]$	Length = 30 meter Width = 10 meter	6	6
	y = 30, [y = -10]	Note:		
	Length = 30 meter	1. OW-1 it steps to solve the quadratic		
	Width = 10 meter	equation is not		
		shown.		
		2. SS-1 improper factorization is		
		shown.		

No		Solution	Scheme	Sub	Marks
4 (a)	(i)	$\overrightarrow{SU} = 2\underline{p}$	N1 2 <u>p</u>		
	(ii)	$\overrightarrow{PR} = \overrightarrow{PQ} + \overrightarrow{QR}$	Use triangle law or parallelogram law		\vec{R}
		$=8\underline{p}+2\underline{q}$	8p + 2q	3	
(b)	$\overrightarrow{PU} = 2\underline{p}$	$2+2\underline{q}$	$(K1) Use \overrightarrow{PU} = \overrightarrow{PS} + \overrightarrow{S}$	\overrightarrow{U} or	
	$\overrightarrow{ST} = -2\underline{q}$	$\underline{q} + m(2\underline{p} + 2\underline{q})$	$\overrightarrow{ST} = \overrightarrow{SP} + m\overrightarrow{PU}.$		
	= 2 <i>m</i>	$\underline{p} + (2m-2)\underline{q}$	$\boxed{ N1 } 2m\underline{p} + (2m-2)\underline{q}$	2	
(c)	$*2m\underline{p}+($	$2m-2)\underline{q} = \lambda^* \left(8\underline{p} + 2\underline{q}\right)$	(K1) Use $*\overline{ST} = \lambda^* \overline{PR}$		
	$*2m=*8\lambda$	$^*2m-2=^*2\lambda$	$K1$ Equate the contraction of \underline{q} and so		of \underline{p} and
	$m=\frac{4}{3}$		$\frac{1}{N1} \frac{4}{3}$	3	8

No	Solution	Scheme	Sub	Marks
5			marks	
(a)	f(x) = x - 75 $gf(x) = 0.95x$	P1 $x - 75$ or $0.95x$		
	Let $y = x - 75$	$(K1)$ Find f^{-1} .		
	x = y + 75	KI Find J.		
	g(y) = 0.95(y + 75)			
	g(x) = 0.95(x+75)	N1 0.95(x+75)	3	
(b)				
	(i) $0.95x = 499.90$	(K1) Equate $0.95x = 49$	9.90.	
	x = 526.21	N1 $x = 526.21$		
	(ii) 499.90 - (*526.21 – 75)	K1) 499.90-(*526.21	–75)	
	48.69	N1 48.69	4	7
		Note: For correct answer only, award K1N1.		

•

Solution	Scheme	Sub	Marks
		marks	
$A = \pi r^2 + \pi r p$ $\pi r^2 + \pi r p = 160$	$\boxed{P1} \pi r^2 + \pi r p = 160$		
$\frac{1}{2}$ πr	Subtitute $p = \frac{160}{100}$ into V . $V = 80r - \frac{\pi r^3}{2}$	$-\pi r^2$ πr	
$\frac{\mathrm{d}V}{\mathrm{d}r} = 80 - \frac{3}{2}\pi r^2$		177	
$80 - \frac{3}{2}\pi r^2 = 0$ $r = \sqrt{\frac{160}{3\pi}} \text{or equivalent}$	K1) Equate	dr to 0	
$V = 80 \left(\sqrt{\frac{160}{3\pi}} \right) - \frac{\pi \left(\sqrt{\frac{160}{3\pi}} \right)}{2}$	K1) Substit	tute *r in	to V
219.7 // 219.75	N1 219.7 // 219.75	5	8
	$p = \frac{160 - \pi r^2}{\pi r}$ $V = \frac{1}{2} \pi r^2 \left(\frac{160 - \pi r^2}{\pi r} \right)$ $V = 80r - \frac{\pi r^3}{2}$ $\frac{dV}{dr} = 80 - \frac{3}{2} \pi r^2$ $80 - \frac{3}{2} \pi r^2 = 0$ $r = \sqrt{\frac{160}{3\pi}} \text{or equivalent}$ $V = 80 \left(\sqrt{\frac{160}{3\pi}} \right) - \frac{\pi \left(\sqrt{\frac{160}{3\pi}} \right)^3}{2}$	$A = \pi r^{2} + \pi r p$ $\pi r^{2} + \pi r p = 160$ $p = \frac{160 - \pi r^{2}}{\pi r}$ $V = \frac{1}{2} \pi r^{2} \left(\frac{160 - \pi r^{2}}{\pi r}\right)$ $V = 80r - \frac{\pi r^{3}}{2}$ $K1 \text{Subtitute } p = \frac{160}{\text{into } V}.$ $V = 80r - \frac{\pi r^{3}}{2}$ $K1 \text{Differentiate } V \text{ with } V = 80r - \frac{\pi r^{3}}{2}$ $K1 \text{Differentiate } V \text{ with } V = 80r - \frac{\pi r^{3}}{2}$ $K1 \text{Differentiate } V \text{ with } V = 80r - \frac{\pi r^{3}}{2}$ $K1 \text{Differentiate } V \text{ with } V = 80r - \frac{\pi r^{3}}{2}$ $V = 80 - \frac{3}{2} \pi r^{2} = 0$ $V = 80 \left(\sqrt{\frac{160}{3\pi}}\right) - \frac{\pi \left(\sqrt{\frac{160}{3\pi}}\right)^{3}}{2}$ $V = 80 \left(\sqrt{\frac{160}{3\pi}}\right) - \frac{\pi \left(\sqrt{\frac{160}{3\pi}}\right)^{3}}{2}$	$A = \pi r^2 + \pi r p$ $\pi r^2 + \pi r p = 160$ $p = \frac{160 - \pi r^2}{\pi r}$ $V = \frac{1}{2} \pi r^2 \left(\frac{160 - \pi r^2}{\pi r}\right)$ $V = 80r - \frac{\pi r^3}{2}$ $80 - \frac{3}{2} \pi r^2 = 0$ $r = \sqrt{\frac{160}{3\pi}} \text{or equivalent}$ $V = 80 \left(\sqrt{\frac{160}{3\pi}}\right)^{-\frac{\pi}{2}} \frac{160}{3\pi}$ $N1 r = \sqrt{\frac{160}{3\pi}} \text{or equivalent}$

e 3

N	0		Solution	Scheme	Sub	Marks
	7 a)	(i)	${}^{7}C_{6}\left(\frac{4}{7}\right)^{6}\left(\frac{3}{7}\right)^{1}$	(K1) Use ${}^7C_r p^r q^{7-r}$.		
			0.1044 $(3)^{0}(4)^{7} \qquad (3)^{1}(4)^{6}$	N1 0.1044		
		(ii)	${}^{7}C_{0}\left(\frac{3}{7}\right)^{0}\left(\frac{4}{7}\right)^{7}$ or ${}^{7}C_{1}\left(\frac{3}{7}\right)^{1}\left(\frac{4}{7}\right)^{6}$ $1-{}^{7}C_{0}\left(\frac{3}{7}\right)^{0}\left(\frac{4}{7}\right)^{7}-{}^{7}C_{1}\left(\frac{3}{7}\right)^{1}\left(\frac{4}{7}\right)^{6}$ or	(K1) Use ${}^{7}C_{r}p^{r}q^{7-r}$. (K1) $1-P(X=0)-F$	P(X=1)	
		$^{7}C_{2}\left(\frac{3}{7}\right)$	${}^{2}\left(\frac{4}{7}\right)^{5} + {}^{7}C_{3}\left(\frac{3}{7}\right)^{3}\left(\frac{4}{7}\right)^{4} + \dots + {}^{7}C_{7}\left(\frac{3}{7}\right)^{7}\left(\frac{4}{7}\right)^{0}$	P(X=2)+P(X=3)	(X - 1) = 0) + + P(X)	=7)
			0.8757	N1 0.8757	5	
(b		(i)	$\frac{81-90}{12}$ or $\frac{108-90}{12}$	(K1) Use of $Z = \frac{X - \mu}{\sigma}$		
			0.2934	N1 0.2934		
		(ii)	[-]1.645 t-90	P1 seen or implied		
			$\frac{t - 90}{12} = -1.645$	(K1) Equate $\frac{t-90}{12} = -1$.645.	10
			70.26	N1 70.26		
	L					

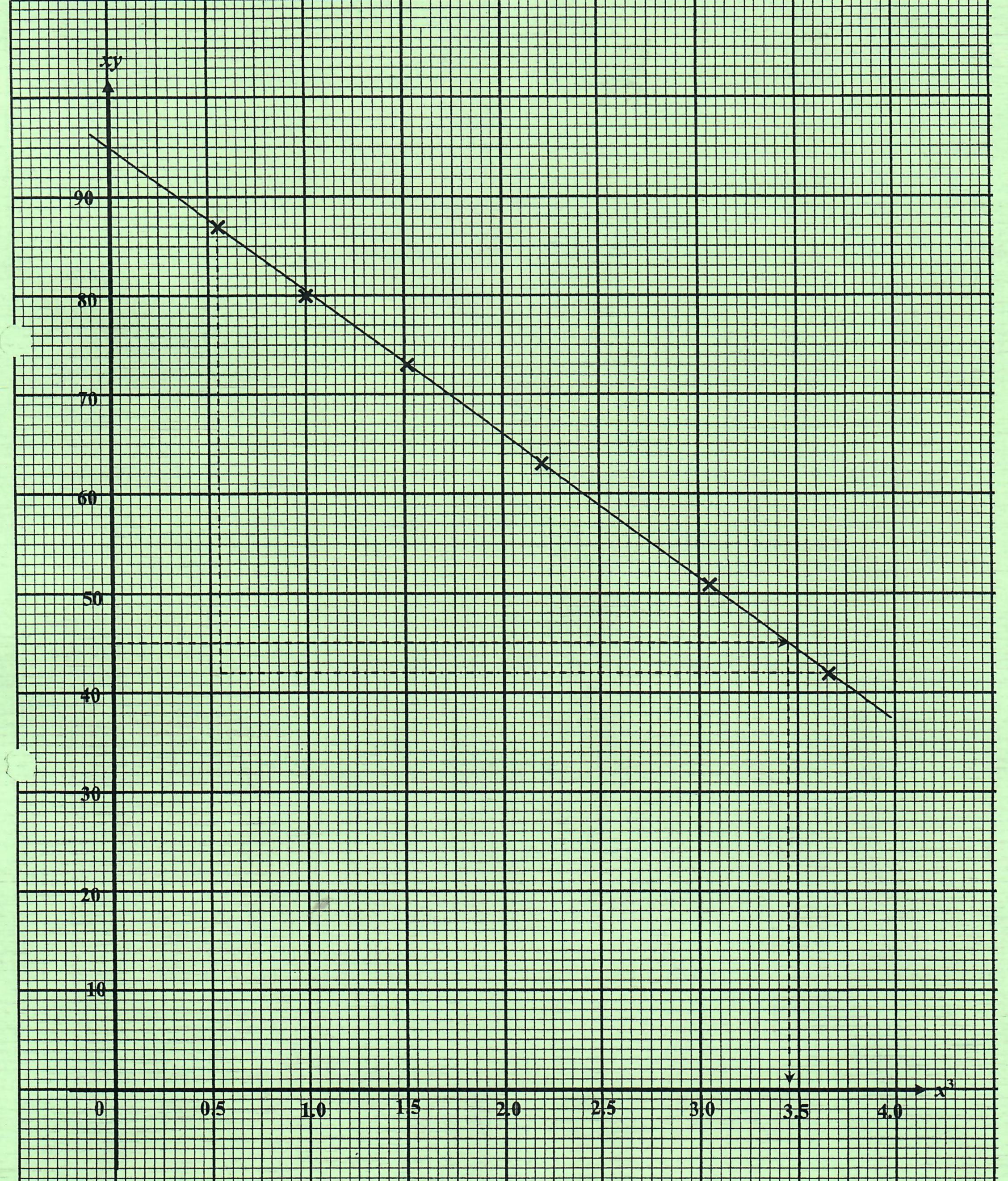
No	Solution	Scheme	Sub	Marks
0			marks	
8 (a)	$-2 \times m_2 = -1$	(K1) Use $m_1 \times m_2 = -1$.		
	$\frac{y-12}{0-4} = \frac{1}{2}$	K1 Use any valid y-coordinate		to find
	y = 10	N1 y = 10	3	
	$y = -\frac{1}{2} \left(\frac{x^2}{2} \right) + c$	K1) Integrate $-\frac{1}{2}x$ w	r.t. x.	
	$12 = -\frac{1}{2} \left(\frac{4^2}{2} \right) + c$	K1) Find the val		
	$y = -\frac{x^2}{4} + 16$	$\begin{vmatrix} \sqrt{N1} & y = -\frac{x^2}{4} + 16 \end{vmatrix}$	3	
(b)	$\pi \int_{12}^{k} (64y - 4y) \mathrm{d}y = 50\pi$			
	$\left[64y - \frac{4y^2}{2}\right]_k^{16} = 50$	Integrate π^* (64) 50π		d equate to
	$\left[64(16)-2(16)^{2}\right]-\left[64k-2k^{2}\right]=50$	K1 Use limit	Jk	
	$k^{2}-32k+231=0$ $(k-21)(k-11)=0$	K1) Sol	ve quadra	atic equation.
	k = 11	N1 $k=11$	4	10

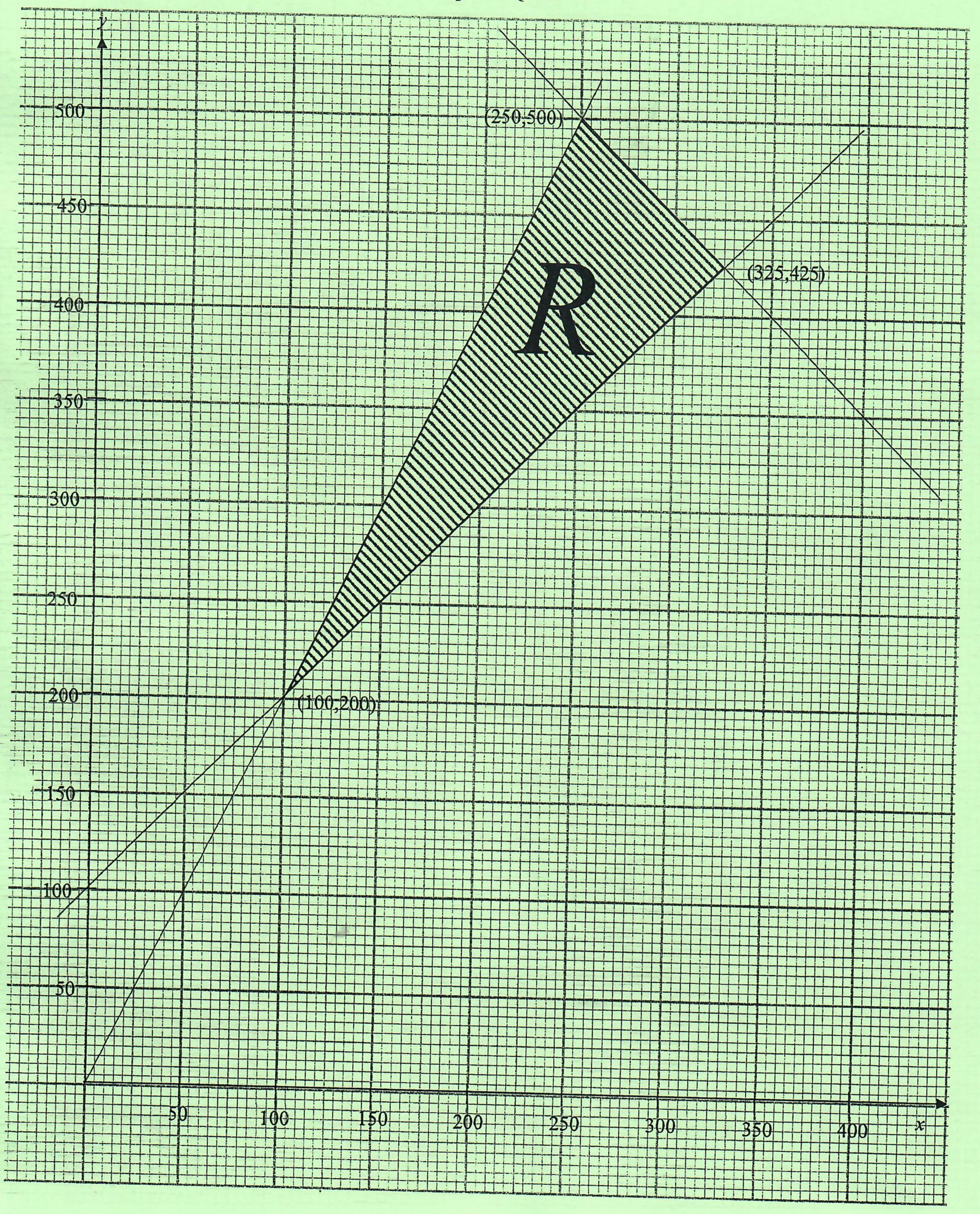
No		Solution	Scheme	Sub marks	Marks
9 (a)	(i)	$-\frac{1}{3} \times m_2 = -1$ $y - 4 = 3(x - 6)$ $y = 3x - 14$	K1 Use $m_1 \times m_2 = -1$. Use $y - y_1 = 0$ Any valid means $y = 3x - 14$) or
	(ii)	$\frac{2}{3}x + 6 = 3x - 14$ $\left(\frac{60}{7}, \frac{82}{7}\right)$	K1 Simultaneous equal $\left(\frac{60}{7}, \frac{82}{7}\right)$	ation.	
(b)	$\frac{0(3)+2x}{5}$ $\left(\frac{45}{2},6\right)$	$\frac{6(3)+2y}{5} = 6$	K1 Use ratio formulae N1 $\left(\frac{45}{2},6\right)$ Note: For correct answer only, award K1N1.	2	
(c)	$C(12, 2)$ $ \begin{array}{c c} C(12, 2) \\ \frac{1}{2} & 0 \\ \hline 2 & 6 \end{array} $	12 0 2 6	N1 C(12, 2)		
	$\frac{1}{2} (45+7) $ 45	2)-(135+72)	K1 Use area formula N1 45	3	10

No				Solution	n	Scheme Sub Marks marks		
10								Intarks
(a)	x^3	0.55	1.00	1.52	2.20	3.05	3.65	N1 Note: at least two d.p
	xy	87	80	73	63	51	42	N1
	Plot xy	agains	st x^3					Plot xy against x^3 with correct axes and uniform scales.
	*6 poir	its plott	ed corre	ectly				N1 .
	Draw 1	ine of b	est fit					N1) Line of best fit. 5
(b)	xy = r	$x^3 + s$						$P1 xy = rx^3 + s$ seen or implied
	(i)	r=	=-15.4	1 ↔ -1	3.4			K1 Use $m=r$.
								$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	(ii)	S =	=93.7	↔95.7				$(N1)$ 93.7 \leftrightarrow 95 7
	(iii) x=	=1.46	↔1.56				$(N1)$ 1.46 \leftrightarrow 1.56 5 10
								Note: SS – 1 if,
								part of the scale is not uniform at the xy -axis and/or the x^3 -axis from
								the first point to the last point or
								does not use the given scale or
								does not use graph paper.

No	Solution	Scheme	Sub	Marks
11 (a)	$\angle POR = 62.67^{\circ}$ or $\angle PXR = 59.52^{\circ}$ $PR^{2} = 10^{2} + 10^{2} - 2(10)(10)\cos 62.67^{\circ}$ $PR = 10.40$ $Arc_{PR} = 10(1.094)$	P1 $\angle POR = 62.67^{\circ}$ seen or implied (K1) Use cosine rule or find PR . (K1) Use $s = r\theta$	any valid	l method to
	Perimeter $A = *10.40 + 10(1.094)$	K1) PR+	arc PR.	
	21.34// 21.35	N1 21.34 // 21.35	5	
	$\cos 60.23^{\circ} = \frac{5.2}{XR}$ $XR = 10.48$ $\frac{1}{2} * (10.48)^{2} * (1.039)$ $\frac{1}{2} * (10.48)^{2} * \sin 59.52^{\circ}$ Area B $\left[\frac{1}{2} * (10.48)^{2} * (1.039)\right] - \left[\frac{1}{2} * (10.48)^{2} * \sin 59.52^{\circ}\right]$ $9.72 \leftrightarrow 9.78$		method to XPYR.	o find hod to

No	Solution	Scheme	Sub marks	Marks
12 (a)	(i) $\frac{6.7}{\sin 40^{\circ}} = \frac{9}{\sin \angle PQT}$ $\angle PQT = 120.29^{\circ} // 120^{\circ}17'$ $\angle RQT = 180^{\circ} - 120.29^{\circ} = 59.71^{\circ}$	K1 Use sine rule. N1 59.71°		
	$RT^{2} = 12^{2} + 6.7^{2} - 2(12)(6.7)\cos 59.71^{\circ}$ $RT = 10.38$	K1 Use cosine rule. $N1$ $RT = 10.38$		
	(ii) $\frac{10.38}{\sin 59.71^{\circ}} = \frac{12}{\sin \angle QTR}$ $\angle QTR = 86.61^{\circ} // 86^{\circ}36'$	K1 Use sine rule. N1 86.61°	6	
(b)	$\angle RTS = 180^{\circ} - 86.61^{\circ} - 19.71^{\circ} = 73.68^{\circ}$ $\frac{1}{2} (10.38) (ST) \sin^{*} 73.68^{\circ} = 45$ 9.035	P1 73.68° K1 Use $\frac{1}{2}ab \sin \theta$ N1 $9.028 \leftrightarrow 9.035$	1C = 45	
(c)	T Q' P	Triangle with ∠I must be acute.	PQ'T	10


No	Solution	Scheme	Sub marks	Marks
13 (a)	$2t^{2} - 5t - 3 = 0$ $t = -\frac{1}{2}, t = 3$	(K1) Use $v = 0$ and sol		
	$s = \frac{2t^3}{3} - \frac{5t^2}{2} - 3t[+c]$ $ *s = \frac{2^*(3)^3}{3} - \frac{5^*(3)^2}{2} - 3^*(3) $		titute *t in	to *s.
(b)	$-\frac{27}{2}$ //-13 $\frac{1}{2}$ //-13.5	$\frac{1}{N1} - \frac{27}{2} //-13 \frac{1}{2} //-1$	3.5	
	$4t - 5 < 0$ $0 \le t < \frac{5}{4}$	(K1) Use $a < 0$. N1 $0 \le t < \frac{5}{4}$	2	
(c)	$ \begin{array}{c c} & & \\ \hline & & \\ & &$	P1 Minimum shape g		
	$\left \frac{2(*3)^3}{3} - \frac{5(*3)^2}{2} - 3(*3) - 0 \right + $ $\left[\frac{2(5)^3}{3} - \frac{5(5)^2}{2} - 3(5) - \left(\frac{2(*3)^3}{3} - \frac{5(*3)^2}{2} - 3(*3) \right) \right]$ $\frac{197}{6} / / 32 \frac{5}{6} / / 32.83$	Use $\left \int_{0}^{3} v dt \right + \int_{0}^{5} v dt + \int_{0}^{5} v$		


No	Solution	Scheme	Sub	Marks
No	OR $t = 0 \to s = 0$ $t = {}^{*}3 \to s = \frac{2({}^{*}3)^{3}}{3} - \frac{5({}^{*}3)^{2}}{2} - 3({}^{*}3) = -13.5$ $t = 5 \to s = \frac{2(5)^{3}}{3} - \frac{5(5)^{2}}{2} - 3(5) = 5\frac{5}{6}$ $ s_{\cdot 3} - s_{0} + s_{5} - s_{\cdot 3} = -13.5 - 0 + 5\frac{5}{6} - (-13.5) $ $\frac{197}{6} / / 32\frac{5}{6} / / 32.83$	Scheme Use $ s_{3} - s_{0} + s_{5} $ equivalent N1 $\frac{197}{6} // 32 \frac{5}{6} // 32.8$	marks -s.3 or	Marks 10

	No		Solution	Scheme Sub Marks
+	14			marks
	(a)	$y \le 2x$		$\boxed{N1} y \le 2x$
		$y-x \ge 1$	00 or equivalent	N1 $y-x \ge 100$ or equivalent
		$x+y \leq 7$	750 or equivalent	N1 $x+y \le 750$ or equivalent 3
	(b)	Refer gr	aph.	Draw correctly at least one straight line from the *inequalities involves x and y.
				N1 Draw correctly all *straight lines.
				N1 Region shaded correctly.
	(c)	(i)	$300 \le y \le 400$	$\boxed{\text{N1}} 300 \le y \le 400$
		(ii)	Minimum point (100, 200)	N1 (100, 200)
			(100 + 200)(12)	Substitute any point in *shaded region into $(x + y)$.
			RM3600	N1 3600
				Note: SS-1 only once if in (a)(i) the symbol '=' is not used at
				all (ii) more than 3 inequalities
				oR in (b)(i) does not use
				given scale (ii) axes interchanged
				(iii) not using graph paper.
				graph paper.

No	Solution	Scheme	Sub	Marks
15 (a)	$\frac{220}{r} \times 100 = 110$ $r = 200$ $s = \frac{187.5}{150} \times 100$ $s = 125$ $\frac{t}{400} \times 100 = 130$	$ \begin{array}{cccc} \hline \text{K1} & \text{Use } \frac{P_1}{P_0} \times 1 \\ \hline \text{N2, 1, 0} \end{array} $	3	
(b)	$\frac{(110 \times 100) + (*125 \times 80) + (105 \times 60) + (130 \times 40)}{280}$ 116.07	$r = 200$, $s = 125$, $t = 52$ (K1) Use $\overline{I} = \frac{\sum Iw}{\sum w}$ (N1) 116.07	2	
(c)	$\frac{U}{75000} \times 100 = 116.07$ $U = 87052.50$ 2808.15	$\begin{array}{ c c c c c }\hline & & & & & & & & & & & \\\hline & K1 & Use & & & & & & \\\hline & & 75000 & & & & & \\\hline & N1 & 87052.50 & & & & \\\hline & N1 & 2808.15 & & & & \\\hline \end{array}$	*116.07	
(d)	140 *116.07 ×100 120.62	K1 Use $\frac{140}{*116.07} \times 100$ N1 120.62	2	10

Graph for Question 10 $\begin{bmatrix} x^3 & 0.55 & 1.00 & 1.52 & 2.20 & 3.05 & 3.65 \\ xy & 87 & 80 & 73 & 63 & 51 & 42 \end{bmatrix}$

