

MAJLIS PENGETUA SEKOLAH MALAYSIA (MPSM) CAWANGAN KELANTAN

SPM 2019

MATEMATIK TAMBAHAN KERTAS 2

UNTUK KEGUNAAN PEMERIKSA SAHAJA

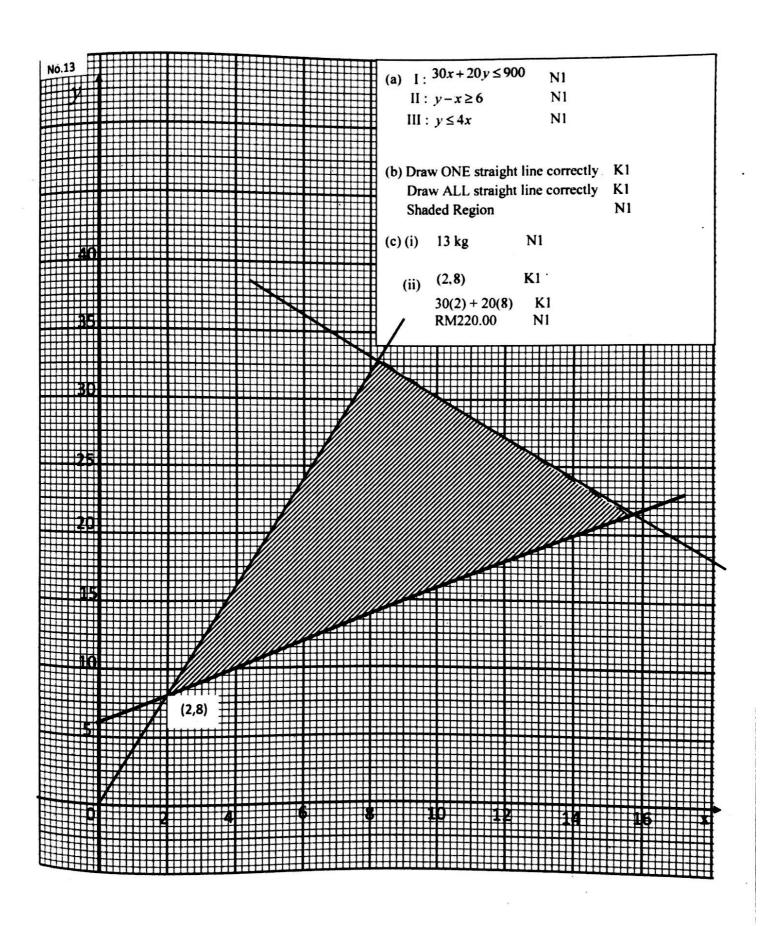
SKEMA PEMARKAHAN

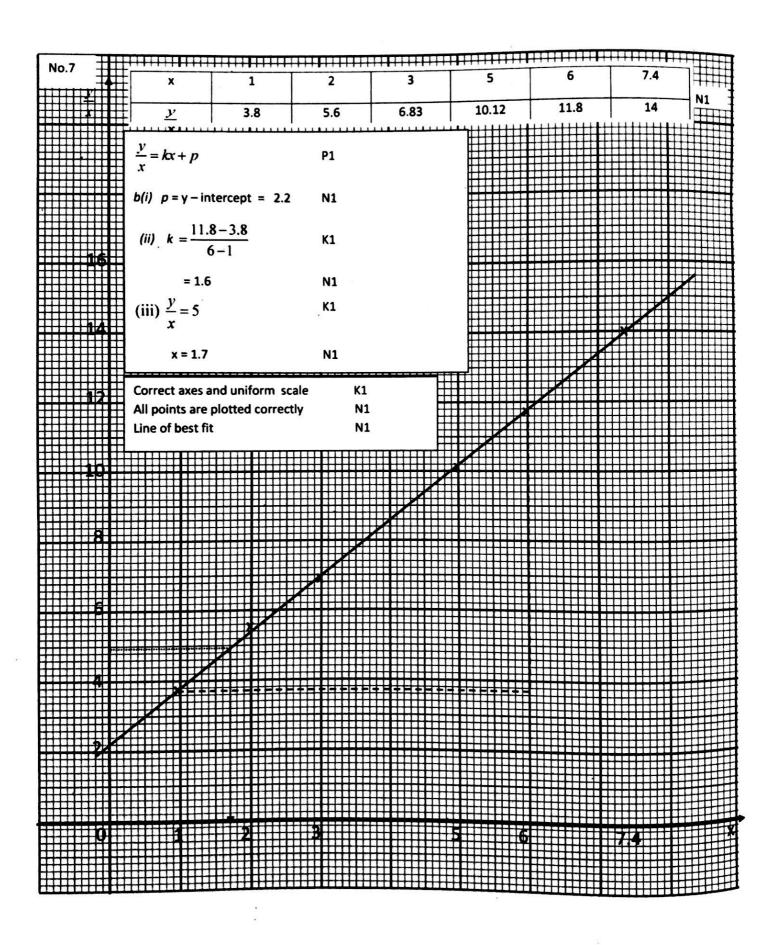
3472/2 (PP) 2019 Hak Cipta MPSM Cawangan Kelantan

MARKS SCHEME ADDITIONAL MATHEMATICS MODULE 2019

NO	SOLUTION	SUB MARKS	MARKS
1.	$m = 2n - 1$ $or n = \frac{m+1}{2}$	Kı	
	$n(2n-1) + 4(2n-1) = 3 - 2n^{2}$ $m\left(\frac{m+1}{2}\right) + 4m = 3 - 2\left(\frac{m+1}{2}\right)^{2}$	K1	
	$n = \frac{-7 \pm \sqrt{7^2 - 4(4)(-7)}}{2(4)}$ $n = \frac{-11 \pm \sqrt{11^2 - 4(2)(-5)}}{2(2)}^2$	K1	5
	m = 0.7111, -2.461 $m = 0.4221, m = -5.922$	NI NI	
*	m = 0.4222, -5.922 $n = 0.7111, n = -2.461$		
2(a)	$\frac{2\sin x kos x}{1 - (1 - 2\sin^2 x)}$	K1	
	$= \frac{kos x}{\sin x}$ $= \cot x$	N1	
(b)	$\frac{1}{0}$ $\frac{1}{2\pi}$		
	Shape and cycle	P1	8
	Amplitude Shipted	P1	
	$y = \frac{3x}{4\pi} - 1$	P1 N1	
	Draw straight line $y = \frac{3x}{4\pi} - 1$	K1	
	No of solutions: 2	N1	
	*		

3(a)	2# 12 2 (1.1) 2 (1.2)		
	$2\pi j, 2\pi (j+1), 2\pi (j+2), \dots \text{ or } \pi d, \pi (d+2), \pi (d+4), \dots$	P1	
	$\frac{10}{2} [2(\pi d) + 9(2\pi)] = 125\pi \text{OR} \frac{10}{2} [2(2\pi r) + 9(2\pi)] = 125\pi$. K1	
	diameter = 3.5 cm	N1	6
(b)	$d=2\pi$	P1	
	$3.5\pi + (n-1)(2\pi) = 19.5\pi$	K1	
	n=9, tidak mencukupi/not enough (Both)	N1	*
4.(a)	p = 0.25 or $q = 0.75$		
	$P(X=3) = {}^{10}C_3(0.25)^3(0.75)^7$	К1	ıs.
	0.2503	N1	
(b) (i)	$P(X > 60) = P\left(Z > \frac{60 - 54}{12}\right)$		
	$I(X>00)=I(Z>\frac{12}{12})$	K1	
	= 0.3085	N1	7
,	0.524 0 0.524		
(ii)	0.524 or -0.524 $m-54$	P1	
	$\frac{m-54}{12} = -0.524$	K1	
8	m = 47.71	N1	
5(a)(i)	$\overrightarrow{RB} = \overrightarrow{RC} + \overrightarrow{CB}$	P1	
	$3\underline{a}-6\underline{b}$	N1	
(ii)	10a-4b	N1	
(b)	$\overline{RQ} = 3m\underline{a} - 6m\underline{b}$	K1	
	$\overline{QP} = -5n\underline{a} - 4n\underline{b}$	V.	. 8
		K1	
	$-5n\underline{a}-4n\underline{b}=(6m-4)\underline{b}-(3m+2)\underline{a}$	K1	
	3m + 2 = 5n @ 6m - 4 = -4n	K1	
	$m = \frac{2}{7} , n = \frac{4}{7} $ (both)	NI	


		K1	
6	$y^2 = -5y + 14$	NI	
	A(4,2)		
	11(4,2)		
	Γ ₁₁₂ 7 ⁴ 1 .	K1	
	$\pi \left[\frac{x^2}{2}\right]_0^4 \text{ or } \frac{1}{3}\pi(2)^2(10)$		
		K1	
	$\pi \left[\frac{(4)^2}{2} - \frac{0^2}{2} \right]$	NI NI	6
	$\left \begin{array}{c} n \\ \hline 2 \\ \hline \end{array} \right $		
	$\begin{bmatrix} (4)^2 & 0^2 \end{bmatrix}$		
	$\pi \left[\frac{(4)^2}{2} - \frac{0^2}{2} \right] + \frac{1}{3} \pi (2)^2 (10)$	K1	
		2.	
		N11	
	$\frac{64}{3}\pi$, Success (both)	N1	
	3		
			10
7	REFER TO THE GRAPH		10
	× _		
8(a)	$\frac{dy}{dx} = 3ax^2 + 2bx$	K1	
		K1	
	$0=3a(1)^2+2b$		
	$2 = a(1)^{3} + b(1)^{2}$ $a = -4, b = 6 $ (both)		
	a = -4, $b = 6$ (both)	N1	
(1)(1)			
(b)(i)	$\int_{0}^{2} (4-x^{2}) dx$		
	$ \begin{bmatrix} \frac{1}{2}(4-x^2)dx \\ 4x-\frac{x^3}{3}\end{bmatrix}_{-2}^{2} $		
	$\begin{bmatrix} x^3 \end{bmatrix}^2$	K1	
	$\left 4x - \frac{\pi}{3} \right $		10
	•		
	$\left(4(2)-\frac{2^{3}}{3}\right)-\left(4(-2)-\frac{(-2)^{3}}{3}\right)$		
	$\left(4(2)-\frac{2^3}{2^3}\right)-\left(4(-2)-\frac{(-2)^3}{2^3}\right)$	K1	
	$\begin{pmatrix} 4(2) & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \end{pmatrix}$	KI	
	$10\frac{2}{3}$	N1	
	·		


(ii)	$\pi \left[4y - \frac{y^2}{2} \right]_0^4 \text{ or } \frac{1}{3}\pi(2)^2(4)$	К1	
	$\pi \left[(4(4) - \frac{4^2}{2}) - 0 \right]$	К1	
			1
	$\pi \left[(4(4) - \frac{4^2}{2}) - 0 \right] - \frac{16}{3} \pi$	К1	
	Settler to		
	$\frac{8}{3}\pi$	N1	
9(a)	22, 27, 32, 37, 42	P1	(77)
	$32.6 = \frac{22(10) + 27(22) + 32(29) + 37(p) + 42(15)}{10 + 22 + 29 + p + 15}$	K1	
	p = 24	N1	
(b)	$\left(\begin{array}{c} 22^{2}(10) + 27^{2}(22) + 32^{2}(29) + 37^{2}(^{*}24) + 42^{2}(15) \\ 10 + 22 + 29 + 24 + 15 \end{array}\right) - (32.6)^{2}$	K1K1	
	36.14	N1	10
٠			
(c)	$L_{K1} = 24.5$ or $L_{K3} = 34.5$	P1	m a
()	$K_1 = 24.5 + \left(\frac{\frac{1}{4}(100) - 10}{22}\right)$ (5) or $K_3 = 34.5 + \left(\frac{\frac{3}{4}(100) - 61}{24}\right)$ (5)	К1	
•			
	$K_1 = 27.909$ $K_3 = 37.417$ Interquartile range = $37.417 - 27.909$	K1	
	= 9.508	N1	
10 (a)	Area of OPQ = $\frac{1}{2}\begin{vmatrix} 0 & -3 & 6 & 0 \\ 0 & 4 & -2 & 0 \end{vmatrix}$ or equivalent		
	$= \frac{1}{2} (0)(4) + (-3)(-2) + (6)(0) - (0)(-2) - (6)(4) - (-3)(0) $	K1	
	$=\frac{1}{2} -18 $		191
	$= 9 \text{ unit}^2$	N1	9

10 (b)	$x = \frac{(-3)(2) + (6)(3)}{2}$ or $y = \frac{(4)(2) + (-2)(3)}{2}$	K1	10
10 (0)	$x = \frac{(-3)(2) + (6)(3)}{3+2} \text{or} y = \frac{(4)(2) + (-2)(3)}{3+2}$ $R\left(\frac{12}{5}, \frac{2}{5}\right)$		
	$R\left(\frac{12}{5},\frac{2}{5}\right)$	N1	
c (i)	TP = 2TQ		
	$\sqrt{(x+3)^2 + (y-4)^2} = 2\sqrt{(x-6)^2 + (y+2)^2}$	K1K1	
	$3x^2 + 3y^2 - 54x + 24y + 135 = 0$		
	$x^2 + y^2 - 18x + 8y + 45 = 0$	N1	
(ii)	$x = 0$, $y^2 + 8y + 45 = 0$	K1	
	$(8)^2 - 4(1)(45)$ *[use $b^2 - 4ac$] -116, no root \rightarrow not intersect.	K1	
		N1	
11(a)	$\sin \angle FOA = \frac{8}{10}$	K1	
	10		
	$\angle FOA = 53.13^{\circ}$	x	
	$\frac{53.13}{180^{\circ}}^{\circ} \times \pi$	100	
	0.9274 rad	N1	
(b)	Arc Length of $CA = (10)(0.9274)$	K1	10
(0)	DE = 4	P1	
	Perimeter of AOEDC = $10 + 10 + 4 + 8 + (10)(0.9274)$	K1	
	= 41.274	NI	
	11.27		
·(c)	1		
(0)	Area of trapezium = $\frac{1}{2}$ (6+10)×8	K1	
	Area of sector = $\frac{1}{2}(10)^2 0.9274$	K1	
	A CONTRACTOR OF THE CONTRACTOR		
	$2\left(\frac{1}{2}\times(6+10)\times8\right)-2\left(\frac{1}{2}(10)^2(0.9274)\right)$	K1	
	21.26		
	31.26	N1	

12(-)	D		
12(a) (i)	$\frac{P_{2018}}{30.00} \times 100 = 120$	K1	
	Harga R = RM36.00	N1	
(ii)	$\frac{I_{2018}}{I_{2010}} = \frac{125 \times 140}{100}$	K1	
	= 175	N1	·
(b)(i)	$120 = \frac{(2 \times x) + (4 \times 140) + (3 \times 120) + (5 \times 110)}{2 + 4 + 3 + 5}$	KIKI	10
	$120 = \frac{1470 + 2x}{14}$		
2	x = 105	N1	8
(ii)	120	P1	
	$I_{2020/2016} = \frac{120 \times 120}{100}$	K1	
	=144	N1	
13	REFER TO THE GRAPH		* * * * * * * * * * * * * * * * * * * *
14(a)	$PR^2 = 18^2 + 20^2 - 2(18)(20)\cos 80^0$	K1 N1	
	$PR = 24.474 \ cm$	- 1	Sac.
(b)	$sin \angle PSR = sin 40^{\circ}$	K1	
(-)	$\frac{24.474}{24.474} = \frac{16}{16}$ $sin \angle PSR = 79.44^{\circ}, 100.56^{\circ} \text{ (both)}$	NI	10
	$sin \angle PSR = 79.44 ,100.30 (0001)$		
(c) (i)	$\angle SPR = 180^{\circ} - 40^{\circ} - 79.44^{\circ}$	P1	
	$ \frac{RS}{\sin 60.56^{\circ}} = \frac{16}{\sin 40^{\circ}} \text{or} RS^{2} = 16^{2} + 24.47^{2} - 2(16)(24.47)\cos 60.56^{\circ} $	K1	
	RS = 21.677 cm	NI	
(ii)	$\frac{1}{2}(20)(18)\sin 80^{\circ} \text{ or } \frac{1}{2}(21.677)(24.474)\sin 40^{\circ}$	Κl	
""	$\frac{1}{2}(20)(18)\sin 80^{\circ} + \frac{1}{2}(21.677)(24.474)\sin 40^{\circ}$	K1	
	2 2 2 347.77 cm ²	NI	

15 (a)	12-4i=0		K1	
	$t = 3$ $V_{\text{max}} = 12(3) - 2(3)^{2}$		K1	
	$V_{\rm max} = 18\rm ms^{-1}$		N1	
(b)	$12t - 2t^2 < 0$	9.	K1	
	1>6	**	N1	
(c)	$12t - 2t^2 = 0$		K1	10
	t=6		N1 .	
(d)	$\int_{0}^{3} \left(12t - 2t^{2}\right) dt$	-		
	$\int_{0}^{3} (12t - 2t^{2}) dt$ $\left[6t^{2} - \frac{2t^{3}}{3} \right]_{0}^{3}$		K1	
	$\left[\left[6(3)^2 - \frac{2(3)^3}{3} \right] - 0 \right]$		K1	
	LL	le ;	N1	

